
S, te Entered)

A 6 726 ON PAGEA20672OVT , A CESSO O ZD~~UTO
" 19 AD t12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

.enaSubtitle) 5. TYPE OF REPORT A PERIOD COVERED

--.Ada Compiler ida i n Summary Report:teleSoft, 26 Feb. 19.88 to 26 Feb. 1989
TeleGen2 Ada Develo nt System, Version 3.20 MicroVAX I] i PERFORMINGbRG. REPORT NUMBER

4-(Host) and (Targ , 8 09031

_4_7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson AFB

PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS
'Wright-Patterson AFB
Dayton, OH, USA

11. CONTROLLING OFFICE NAME AND APORESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 13 NuMUt Uf FAr.

Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADORESSlf different from Controlling Office) 15. SECURITY CLASS (of this report)

UNCLASSIFIED
Wright-Patterson AFB 1Sa. DR ESEIFICATION/DOWNGRADING

Dayton, OH, USA MUUL N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20 If different from Report)

UNCLASSIFIED DTIC
18 SUPPLEMENTARY NOTES SI MAI 2' ;5 U

19. KEYWORDS (Continue on reverse side if necessa-r
7 ndidentify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ASS TRACT (Continue on reverse side if necessary and identify by block number)

TeleSoft, TeleGen2 Ada Development System, Version 3.20, Wright-Patterson AFB, MicroVAX

II under VMS, Version 4.6 (Host) to MicroVAX II under VMS, Version 4.6 (Target),

ACVC 1.9.

DD Pu"" 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (A,'hen Data Entered)



AVF Control Number: AVF-VSR-125.0189
87-11-30-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 880219W1.09031
TELESOFT

TeleGen2 Ada Development System, Version 3.20
MicroVAX II

Completion of On-Site Testing:
26 February 1988

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OR 45433-6503

Accesion For.

NTIS CRA&I
DTIC TAB ]

Prepared For:. Unannout:ced 0
Ada Joint Program Office Jstfc. ......... ........

United States Department of Defense
Washington DC 20301-3081 By .....................

Distributio i

Av 'Aibiiity Codes

is Speci-al

117 
-

8 9



Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Development System, Version 3.20

Certificate Number: 880219W1.09031

Host: Target:
MicroVAX II under MicroVAX II under
VMS, VMS,
Version 4.6 Version 4.6

Testing Completed 26 February 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validatiof Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
William S. Ritchie
Acting Director
Department of Defense
Washington DC 20301



Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Development System, Version 3.20

Certificate Number: 880219W1.09031

Host: Target:

MicroVAX II under MicroVAX II under

VMS, VMS,
Version 4.6 Version 4.6

Testing Completed 26 February 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility

Steven P. Wilson
ASD/SCEL
Wright-Patterdon AFB OH 45433-6503

Ada Validation Organizationi'
Dr. John F. Kramer
1----Itute for Defense Ana es

Alexandria VA 22311

Ada Joint Program Office
William S. Ritchie
Acting Director
Department of Defense

Washington DC 20301



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . . . . 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT . . . . 1-2
1.3 REFERENCES .................... 1-3
1.4 DEFINITION OF TERMS ....... . . . .. 1-3
1.5 ACVC TEST CLASSES . . . . . . . . . . . . . . . . 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED . . . . . . . . . . . . . . . 2-I
2.2 IMPLEMENTATION CHARACTERISTICS . . . . . . . . . . 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS . . . . . .. . . .......... 3-I
3.2 SUMMARY OF TEST RESULTS BY CLASS. .. . . . .3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER ........ 3-2
3.4 WITHDRAWN TESTS . . . . . .......... 3-2
3.5 INAPPLICABLE TESTS . . . . . . . . . . . 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-4
3.7 ADDITIONAL TESTING INFORMATION . . . . . . .... 3-5
3.7.1 Prevalidation ................. 3-5
3.7.2 Test Method .... . . . . . . . .... . 3-5
3.7.3 Test Site . . . . . . . . . . . . . . 3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS



CHAPTER 1

INTRODUCTION

I This Validation Summary Report 3fS describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results Jaing this compiler using the Ada Compiler
Validation Capability (AZV3)-. An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.-N

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.-

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. > The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1



INTRODUCTION

1 .1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 26 February 1988 at TELESOFT, San Diego, CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2



INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, I January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical

1-3



Ilk

INTRODUCTION

support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compiler3, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Language The Language Maintenance Panel (LMP) is a committee
Maintenance established by the Ada Board to recommend interpretations and
Panel possible changes to the ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity regarding
a particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to chc,..k
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserv d words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is

1-4



INTRODUCTION

passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowabio reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat soms compiler optimizations allowed Ly the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

1-5



INTRODUCTION

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1-6



CHAPTER 2

CONFIGURATION INFORMATION

2. 1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: TeleGen2 Ada Development System, Version 3.20

ACVC Version: 1.9

Certificate Number: 880219W1.09031

Host Computer:

Machine: MicroVAX II

Operating System: VMS, Version 4.6

Memory Size: 10 megabytes

The host system has a TK50 95MB streaming tape drive, a
reel-to-reel magnetic tape drive, and Local Area VAX
Cluster.

Target Computer:

Machine: MicroVAX II

Operating System: VMS, Version 4.6

Memory Size: 10 megabytes

Communications Network: N/A

2-1



CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to at least 65 levels, block statements nested to at least
65 levels, and recursive procedures separately compiled as
subunits nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same declarative part.
(See tests D55A03A..H (8 tests), D56001B, D64005E..G (3 tests),
and D29002K.)

" Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64-bit integer calculations. (See tests
D4AOO2A, D4AOO2B, D4AO04A, and D4AOO4B.)

" Predefined types.

This implementation supports the additional predefined types
LONG INTEGER and LONG FLOAT in the package STANDARD. (See tests
B86051C and B86001D.)

" Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERICERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

" Expression evaluation.

Apparently some default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2



i n nk

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

No exception is raised when a literal operand in a fixed-point
comparison test is outside the range of the base type. (See test
C45252A.)

Apparently NUMERIC ERROR is raised when a literal operand in a
fixed-point membership test is outside the range of the base type.
(See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AO 14A• )

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises no exception. (See test
C36003A. )

No exception is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exception. (See test C52103X.)

(.

2-3



CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the length of a dimension
is calculated and exceeds INTEGER'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implem-ntation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception. (See
test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation acepts such subtype indications. (See test
E381 04A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, index subtype
checks appear to be made as choices are evaluated. (See tests
C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-4



CONFIGURATION INFORMATION

Representation clauses.

An implementation might legitimately place restrictions on

representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values

for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE :> 0, TRUE => 1) are not
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications of less than 16 bits for
enumeration types are not supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
.supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported unless aligned on
16 bits. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures. The pragma INLINE
is not supported for library level functions. (See tests LA3OOA,
LA3OO4B, EA3004C, EA3004D, CA3004E, and CA3OO4F.)

Input/output.

The package SEQUENTIAL_10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

2-5



CONFIGURATION INFORMATION

The package DIRECTIO cannot be instantiated with unconstrained
array. types and record types with discriminants without defaults.
(See tests AE2101H, EE2401D, and EE2401G.)

The director, AJPO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE ERROR or NAME ERROR if file
input/output is not supported. This implementation exhibits this
behavior for TEXTIO.

Modes IN FILE and OUT FILE are supported for SEQUENTIAL 10. (See
tests CE21O2D and CE21O2E.)

Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECT 10. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL 10 and DIRECT_10.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIALIO and DIRECT IO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to the last
element written. (See test CE2208B.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in IN FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text I/O for reading only. (See tests CE3111A..E (5
tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
file for sequential I/O for reading only. (See tests CE2107A..D
(4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct I/O for reading only. (See tests CE2107F..I (5
tests), CE211OB, and CE2111H.)

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE2107E.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are not
deleted when they are closed. (See tests CE2108A and CE2108C.)

Generics.

(2-

2-6



CONFIGURATION INFORMATION

Generic subprogram declarations and bodies can be compiled in
separate compilations only if the body is compiled before any
instantiations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations only if the body is compiled before any
instantiations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-7



CHAPTER 3

TEST INFOR4ATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 24 tests had been withdrawn because of test errors. The AVF
determined that 346 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 285
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 10 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 106 1046 1525 17 13 45 2752

Inapplicable 4 5 331 0 5 I 346

Withdrawn 3 2 18 0 1 0 24

TOTAL 113 1053 1874 17 19 46 3122

3-1



TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 _ _4

Passed 184 464 491 245 166 98 141 327 132 36 232 3 233 2752

Inapplicable 20 109 184 3 0 0 2 0 5 0 2 0 21 346

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 1 24

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 24 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C
C35904A C35A03E C35A03R C37213H C37213J
C37215C C37215E C37215G C37215H C38102C
C41402A C45614C A74106C C85018B C87B04B
CC1311B BC3105A ADIA01A CE2401H

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 346 tests were inapplicable for the
reasons indicated:

A39005B uses a length clause with a SIZE specification of eight
bits. The minimum size for an allocated object under this
compiler is 16 bits. Therefore, the length clause is rejected.

" A39005G uses a record representation clause which specifies an
alignment of eight. This compiler forces an alignment of 16.
Therefore, the record representation clause is rejected.

3-2



" C355081..J (2 tests) and C35508M..N (2 tests) use enumeration

representation clauses for boolean types containing

representational values other than (FALSE => 0, TRUE => 1). These
clauses are not supported by this compiler.

" C35702A uses SHORTFLOAT which is not supported by this
implementation.

" C35904B raises NUMERIC ERROR instead of CONSTRAINT ERROR.
NUMERIC ERROR is raised during elaboration of the fixed-point
constraint which occurs prior to the compatibility check that
would raise CONSTRAINTERROR.

" The following tests use SHORTINTEGER, which is not supported by
this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55BO9D

" C45231D and B86001D require the substitution of a macro for a
predefined numeric type other than INTEGER, SHORT INTEGER,
LONG INTEGER, FLOAT, SHORTFLOAT, and LONGFLOAT. This compiler
does not support any such type.

" C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-
point base types which are not supported by this compiler.

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT IO.

CA2009C, CA2009F, BC320h1C, and BC3205D contain instantiations of
generics in cases where the body is not available at the time of
the instantiation. As allowed by AI-00408/07, this compiler
creates a dependency on the missing body so that when the actual
body is compiled, the unit containing the instantiation becomes
obsolete.

CA3004F, EA3004D, and LA3004B use the INLINE pragma for library
level functions, which is not supported by this compiler.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

3-3



TEST INFORMATION

" AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

. The following 15 tests are inapplicable because associating more
than one internal sequential, direct, or text file with the same
external file for reading/writing or writing is not allowed:

CE2107B..E(4) CE2107G..I(3) CE2110B CE2111D
CE2111H CE3111B..E(4) CE3114B

The following 285 tests require a floating-point accuracy that
exceeds the maximum of 9 digits supported by this implementation:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation to compensate for legitimate implementation
behavior. Modifications are made by the AVF in cases where legitimate
implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for nine Class B tests and one Class E test.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B27005A BA3006A BA3006B BA3007B BA3008A
BA3008B BA3013A

The following tests need a 'PRAGMA LIST (ON);' added at the beginning of
the source file in order to have a complete source/error listing.

B28001R B28001V E28002D

3-4



The following tests were graded using a modified evaluation criteria:

a. C45651A requires that the result of the expression in line 227 be
in the range given in line 228; however, this range excludes some
acceptable results. This implementation passes all other checks
of this test, and the AVO ruled that the test is passed.

b. C46014A contains an assignment that is intended to raise an
exception. This implementation performs an optimization--given
that the assignment is to a dead variable--and thus does not raise
the exception. Because the optimization only affected one check
in the test, the AVO ruled that the test should be graded as
passed, as all other checks produced the expected results and the
test objective was met.

c. C96001A assumes that DURATION'SMALL >= SYSTEM.TICK; however, the
Ada Standard does not require such a relation. This
implementation executes delay statements with greater accuracy
than CALENDAR.CLOCK can resolve, and so the check on line 97 is
failed. This implementation passes all other checks of this test,
and the AVO ruled that the test is passed.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the TeleGen2 Ada Development System compiler was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the TeleGen2 Ada Development System compiler using ACVC Version
1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of a cluster of three MicroVAX II hosts/targets
operating under VMS, Version 4.6.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

3-5



TEST INFORMATION

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled, linked, and run on the MicroVAX II. Results were printed
from the host computer.

The compiler was tested using command scripts provided by TELESOFT and
reviewed by the validation team. The compiler was tested using all default
option settings except for the following:

Class B tests

Option Effect

VMS choose VAX/VMS to VAX/VMS compiler.

MONITOR verbose.
PROCEED continue compilation despite errors, no

continuation prompting at each error.
LIST interspersed listing.
OPTIMIZE * see note below.
VIRTUALSPACE set virtual space of library manager greater

than default.

Executable tests

Option Effect

VMS choose VAX/VMS to VAX/VMS compiler.
MONITOR verbose.
PROCEED continue compilation despite errors, no

continuation prompting at each error.
OPTIMIZE * see note below.

VIRTUALSPACE set virtual space of library manager greater
than default.

BIND invokes the binder.
NOSHARE do not use a sharable runtime.
LINK="/NOMAP,' do not generate a link map.
NOSAVE do not save the link script.
OUTPUT='testname' name of executable file.

The optimizer switch OPTIMIZE is equivalent to "OPTIMIZE=ALL" in which

"ALL" stands for "PARALLEL, RECURSE, INLINE, AUTOINLINE".

Option Effect

PARALLEL indicates that one or more of the subprograms
being optimized may be called from parallel tasks.

RECURSE indicates that one or more of the subprograms
interior to the unit/collection being optimized
could be called recursively by an exterior
subprogram.

INLINE enables inline expansion of those subprograms
marked with an INLINE pragma or generated

3-6



by the compiler.
AUTOINLINE enables automatic inline expansion of any subprogram

called from only one place, as well as those marked
by an INLINE pragma or generated by the compiler.

Tests were compiled, linked, and executed (as appropriate) using a cluster
of three host/target computers. Test output, compilation listings, and job
logs were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at TELESOFT, San Diego, CA and was completed on 26
February 1988.

3-7



APPENDIX A

DECLARATION OF CONFORMANCE

TELESOFT has submitted the following Declaration of
Conformance concerning the TeleGen2 Ada Development
System compiler.

A-i



DECLARATION OF CONFORMANCE

Compiler Implementer: TELESOFT
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: TeleGen2 Ada Development System
Version: Version 3.20

Host Architecture ISA: MicroVAX I]
OS&VER #: VMS, Version 4.6

Target Architecture ISA: MicroVAX II
OS&VER #: VMS, Version 4.6

Implementer's Declaration

I, the undersigned, representing TELESOFT, have implemented no deliberate extensions
to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. I declare that TELESOFT is the owner of record of the Ada language
compiler(s) listed above and, as such, is responsible for maintaining said compiler(s) in
comformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(si ed in this declaration shall be made only in the owner's corporate
name. K 4 

te:

TELES(YF1T" -_

Raymond A. Parra, Director, Contracts/Legal

Owner's Declaration

I. the undersigned, representing TELESOFT take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure of
the final Validation Summary Report. I further agree to continue to comply with the
Ada trademark policy, as defined by the Ada Joint Program Office. I declare that all of
the Ada language co ers listed, and their host/target performance are in compliance
with the Ada L age St ndard ANSI/MIL-STD-1815A.

i/ I, \ ] V]/L r _ D ate: "4P_./ .

TELESOFT- .Date:-A
Raymond A. Parra, Director, Contracts/Legal

A-2



4

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the TeleGen2 Ada Development System compiler, Version 3.20, are described
in the following sections, which discuss topics in Appendix F of the Ada
Language Reference Manual (ANSI/MIL-STD-1815A). Implementation-specific
portions of the package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONGINTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -1.93428E 25 .. 1.93428E+25;
type LONG FLOAT is digits 9

range -2.1267647922655E+37 .. 2.1267647922655E+37;

type DURATION is delta 2#1.0#E-14 range -86400 .. 86400;

end STANDARD;

B-1



APPENDIX F OF THE Ada STANDARD

1. Predefined Pragmas.

pragma LIST(ON/OFF);
It may appear anywhere a pragma is allowed. The pragma
has the effect of generating the source compilation.
The listing will begin at the first PRAGMA LIST(ON)
statement if no previous PRAGMA LIST(OFF) statement was
encountered. Otherwise, the listing will begin at the
top of the source.

2. Implementation-Dependent Pragmas.
The following implementation-dependent pragmas are supported:

pragma COMMENT (<string_literal>);
It may appear within a compilation unit. The pragma
comment has the effect of embedding the given sequence
of characters in the object code of the compilation
unit.

pragma LINKNAME (<subprogram name>, <string_literal>);
It may appear in any declaration section of a unit.
This pragma must also appear directly after an interface
pragma for the same <subprogramname>. The pragma
linkname has the effect of making <string_literal>
apparent to the linker.

3. Implementation-Dependent Attributes.

There are no implementation-dependent attributes supported.

4. Specification of Package SYSTEM.

package SYSTEM is
type ADDRESS is access INTEGER;
type SUBPROGRAMVALUE is private;

type NAME is (TeleGen2);

SYSTEM NAME : constant NAME := TeleGen2;
STORAGE UNIT : constant := 8;
MEMORYSIZE : constant := 2147483647;

-- System-dependent named numbers:

MIN TNT : constant :=-2147483648;
MAX INT : constant :: 2147483647;
MAXDIGITS : constant := 9;
MAX MANTISSA : constant := 31;
FINE DELTA : constant :: 1.0 / (2**MAXMANTISSA);
TICK : constant :: 10.OE-3;

-- Other system-dependent declarations:

B-2



APPENDIX F OF THE Ada STANDARD

subtype PRIORITY is INTEGER range 0..63;

MAX TEXT 10 COUNT : constant :: 32676;
MAX TEXT_I_FIELD : constant := 1000;

private
type SUBPROGRAMVALUE is

record
PROC ADDR : ADDRESS;
STATIC LINK : ADDRESS;
GLOBALFRAME : ADDRESS;

end record;
end SYSTEM;

5. Restrictions on Representation Clauses.
The compiler supports the following representation clauses:"

Length Clauses : for enumeration and derived integer
types 'SIZE attribute.
for access types 'STORAGE SIZE
attribute.
for task types 'STORAGE SIZE attribute.
for fixed-point types 'SMALL attribute.

Enumeration Clauses : for character and enumeration

types other than character and
boolean.

Record Representation Clauses.

Address Clauses : for objects and entries.

The compiler does NOT support the following representation
clauses:

Enumeration Clauses : for boolean.

Address Clauses : for subprograms, packages, and tasks.

This compiler contains a restriction that allocated objects
must have a minimum allocation size of 16 bits.

6. Implementation-Dependent Naming.
There are no implementation-generated names denoting
implementation-dependent components.

7. Interpretation of Expressions in Address Clauses.
Expressions that appear in address specifications are
interpreted as the first storage unit of the object.

B-3



APPENDIX F OF THE Ada STANDARD

8. Restrictions on Unchecked Conversions.
Unchecked conversions are allowed between any types unless
the target type is an unconstrained record or array type.

9. Input-Output Package Characteristics.
Instantiations of DIRECT 10 and SEQUENTIAL_10 are supported
with the following exceptions:

" Unconstrained array types.

" Unconstrained types with discriminants without default
values.

In DIRECT 10 the type COUNT is defined as
type COUNT is range 0..2_147483_647;

In TEXT_10 the type COUNT is defined as
type COUNT is range 0..32766;

In TEXT 10 the type FIELD is defined as
subtype FIELD is INTEGER range 0..1000;

(.

" mnm mnmamnunuanunu imnn B-4U



APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGIDI (1..199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (1..199 => 'A', 200 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (1..100 => 'A', 101 => '3', 102..200 :> 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (1..100 => 'A', 101 => '4', 102..200 => 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGINT LIT (1..197 => '0', 198..200 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I



TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1..194 => '0', 195..200 => "69.OE1")

A universal real literal of

value 690.0 with enough leading

zeroes to be the size of the

maximum line length.

$BIG STRINGI (1 :> 1"", 2..102 :> 'A', 103 => "')

A string literal which when

catenated with BIG STRING2

yields the image of BIG.IDI.

$BIG STRING2 (1 => ,", 2..101 => 'A',

A string literal which when 102..103 => "1""")

catenated to the end of

BIG STRING1 yields the image of

BIG IDI.

$BLANKS (i..180 => '

A sequence of blanks twenty

characters less than the size

of the-maximum line length.

$COUNT LAST 32766

A universal integer

literal whose value is.

TEXT_ 0 •COUNT' LAST.

$FIELDLAST 1000

A universal integer

literal whose value is

TEXTIO.FIELD'LAST.

$FILE NAME WITHBAD CHARS "BAD-CHARSXI } ]@#$-&-Y"

An external file name that

either contains invalid

characters or is too long.

$FILE NAME WITH WILDCARDCHAR "WILD-CHAR*.NAM"

An external file name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 100000.0

A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2



TEST PARAMETERS

Name and Meaning Value

$GREATERTHAN DURATION BASE LAST 131_073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL_FILE NAMEI "BADCHAR*W/%"
An external file name which
contains invalid characters.

$ILLEGAL EXTERNALFILENAME2 (l..256 => 'A')
An external file name which
is too long.

$INTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LASTPLUS_1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -100 00.0
A7 universal real literal that
lies between DURATION'BASEtFIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN -DURATION BASE FIRST -131_073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 9
Maximum digits supported for
floating-point types.

$MAX_IN_LEN 200
Maximum input line length
permitted by the implementation.

$MAXINT 21J47483 647
A universal integer literal

whose value is SYSTEM.MAXINT.

$MAX INTPLUS_1 21147483648
A universal integer literal
whose value is SYSTEM.MAX INT+1.

C-3



TEST PARAMETERS

Name and Meaning Value

$MAX_LEN INT BASED-LITERAL (1..2 => "2:", 3..197 => '0', 198..200 => "11:")

A universal integer based

literal whose value is 2#11#

with enough leading zeroes in

the mantissa to be MAXINLEN

long.

$MA)LLENREALBASED-LITERAL (1..3 :> "16:", 4..196 => '0',

A universal real based literal 197..200 => "F.E:")

whose value is 16:F.E: with

enough leading zeroes in the

mantissa to be MAX INLEN long.

$MAXSTRINGLITERAL (1 => 1"', 2..199 => 'A', 200 > 1"')

A string literal of size

MAX INLEN, including the quote
characters.

$MININT -21 47483648
A universal integer literal

whose -value is SYSTEM.MININT.

$NAME SHORTSHORTINTEGER (NOT supported)

A name of. a predefined numeric

type other than FLOAT, INTEGER,

SHORTFLOAT, SHORTINTEGER,

LONGFLOAT, or LONG-INTEGER.

$NEGBASEDINT 16#FFFFFFFE#

A based integer literal whose

highest order nonzero bit

falls in the sign bit

position of the representation
for SYSTEM.MAXINT.

C-4



I

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 24 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) incorrectly follows a

later declaration.

" E28005C: This test requires that "PRAGMA LIST (ON);" not appear

in a. listing that has been suspended by a previous "PRAGMA LIST
(OFF);"; The Ada Standard is not clear on this point, and the
matter will be reviewed by the AJPO.

" C34004A: The expression in line 168 yields a value outside the
range f the target type T, but there is no handler for
CONSTRAINT ERROR.

" C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

" A35902C: The assignment in line 17 of the nominal upper bound of
a fixed-point type to an object raises CONSTRAINTERROR, for that
value lies outside of the actual range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28

wrongly raises CONSTRAINT-ERROR, because its upper bound exceeds
that of the type.

" C35AO3E and r35AO3R: These tests assume that attribute 'MANTISSA

returns 0 when applied to a fixed-point type with a null range,
but the Ada Standard does not support this assumption.

" C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

D-1



WITHDRAWN TESTS

" C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINT ERROR.

" C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with type
CONS.

" C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINTERROR.

" C41402A: The attribute 'STORAGESIZE is incorrectly applied to an
object of an access type.

" C45614C: The function call of IDENT INT in line 15 uses an
argument of the wrong type.

" A74106C, C85018B, C87BO4B, and CC1311B: A bound specified in a
fixed-point subtype declaration lies outside of that calculated
for the base type, raising CONSTRAINT ERROR. Errors of this sort
occur at lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253 of the
four tests, respectively.

" BC3105A: Lines 159 through 168 expect error messages, but these
lines are correct Ada.

" AD1AO1A: The declaration of subtype SINT3 raises CONSTRAINT ERROR
for implementations which select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 and 117 contain the
wrong values.

D-2


